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ABSTRACT Gene recognition is one of the most impor-
tant problems in computational molecular biology. Previous
attempts to solve this problem were based on statistics, and
applications of combinatorial methods for gene recognition
were almost unexplored. Recent advances in large-scale cDNA
sequencing open a way toward a new approach to gene
recognition that uses previously sequenced genes as a clue for
recognition of newly sequenced genes. This paper describes a
spliced alignment algorithm and software tool that explores all
possible exon assemblies in polynomial time and finds the
multiexon structure with the best fit to a related protein.
Unlike other existing methods, the algorithm successfully
recognizes genes even in the case of short exons or exons with
unusual codon usage; we also report correct assemblies for
genes with more than 10 exons. On a test sample of human
genes with known mammalian relatives, the average correla-
tion between the predicted and actual proteins was 99%. The
algorithm correctly reconstructed 87% of genes and the rare
discrepancies between the predicted and real exon-intron
structures were caused either by short (less than 5 amino
acids) initial/terminal exons or by alternative splicing. More-
over, the algorithm predicts human genes reasonably well
when the homologous protein is nonvertebrate or even pro-
karyotic. The surprisingly good performance of the method
was confirmed by extensive simulations: in particular, with
target proteins at 160 accepted point mutations (PAM) (25%
similarity), the correlation between the predicted and actual
genes was still as high as 95%.

The complexity of gene organization in eukaryotes and com-
binatorial possibilities for exon assembly lead to the problem
of prediction of proteins encoded in genomic DNA, which has
been extensively studied in the last 15 years. Gene prediction
started as analyses of codon usage (1) and functional sites (2).
However, these approaches could not deal with eukaryotic
genes, and integrated algorithms were developed that com-
bined information about codon usage and splicing sites (3-9).
These algorithms proved to be useful for gene prediction via
construction of oligonucleotide probes for screening of cDNA
libraries (10) (for reviews of statistical approaches for gene
recognition, see refs. 11 and 12). However, reliable prediction
of complex exon assemblies is still unattainable and, unless
some major breakthrough is reached in understanding the
mechanism of splicing, it is unlikely that the performance of
algorithms relying on statistical information can be signifi-
cantly improved. Currently, the correlation between predicted
and actual genes is around 70% with just 40-50% exons
predicted correctly even for the best gene recognition pro-
grams (13).

In this paper, we propose a new combinatorial approach to
the exon assembly problem, which uses related proteins to
derive the correct exon-intron structure. Instead of using
poorly understood statistical properties of exons, the method

attempts to solve a combinatorial puzzle: to find a set of blocks
in a genomic sequence whose concatenation (splicing) fits one
of the known proteins. Fig. la illustrates the spliced alignment
problem for the following "genomic" sequence:

It was brilliant thrilling morning and the slimy hellish lithe
doves gyrated and gambled nimbly in the waves

whose different blocks make up the famous Lewis Carroll line
(35):

't was brillig, and the slithy toves did gyre and gimble in the
wabe.
Our approach is based on the following idea. Given a

genomic sequence, we first find a set of candidate blocks that
contains all true exons. This can be done by selecting all blocks
between potential acceptor and donor sites (i.e., between AG
and GU dinucleotides) with furtherfiltering of this set (in a way
that does not lose the actual exons). The resulting set of blocks,
of course, can contain many false exons and currently it is
impossible to distinguish all actual exons from this set by a
statistical procedure. Instead of trying to find the actual exons,
we explore all possible block assemblies and find an assembly
with the highest similarity score to a known target protein. The
number of different block assemblies is huge, but the spliced
alignment algorithm, which is the key ingredient of our method,
scans all of them in polynomial time.

After the optimal block assembly is found, our hope is that
it represents the correct exon-intron structure. The main result
of the paper is that this is almost guaranteed if a protein
sufficiently similar to the one encoded in the analyzed frag-
ment is available. On our test data, the algorithm correctly
assembles exons in 87% of the human genes provided that a
homologous nonprimate mammalian protein is known. The
remaining discrepancies are minor, and the correlation be-
tween the predicted and actual genes is 99%. Moreover, some
seeming errors were caused by unannotated alternative splic-
ing. The method also performs successful gene recognition
with more evolutionary distant target proteins; for vertebrate
nonmammalian targets, the correlation between the predicted
and actual genes was 90%. Tests on simulated data demon-
strate that almost perfect predictions (close to 100% correla-
tion with the actual genes) can be obtained from targets with
distances up to 100 accepted point mutations (PAM) (40%
similarity), whereas predictions at 160 PAM (25% similarity)
are still reliable (95% correlation), and those at 240 PAM
(15% similarity) are useful (75% correlation).
The idea of a similarity-based approach to gene detection

was first stated in ref. 14. Indeed, the number of already known
genes is so high that many newly sequenced genes have a
previously known relative. It is becoming clear that sequencing
of the complete pool of human mRNAs (15) will significantly
increase the proportion of genes with a relative in the data
bases. Thus, information about homologous proteins can be
used not only for gene detection, but for detailed prediction of
the exon-intron structure as well. However, the computational
complexity of exploring all exon assemblies on the top of

Abbreviation: PAM, accepted point mutation.
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'T WAS BR I LLI G, AND THE SLI THE TOVES DI D GYRE AND GI MBLE IN THE WABE
|TWAS DR LLI,~jjAND TH E SL|TH eDOVES GYRATED AND GAMDLED TEWVE
IT WAS BR ILL G, AND THIE L TH E DOVES GYRATED NIMBLY IN THE WAVE
|T HR I LLI NH EZ DH EL LI SHD DOVES GYRATED AND GAMDLE
|T HRI LLI NH -- |HEL LISH] DOVES GYRATEDI NI MBLY I N TH E WAVE

FIG. 1. Spliced alignment problem: (a) block assemblies with the
best fit to the Lewis Carroll "genomic sequence," (b) corresponding
alignment network, and (c) equivalent transformation of the alignment
network.

sequence alignment algorithms is rather high and until very
recently there were no methods addressing this problem.
Although the predicted genes are routinely submitted to
similarity searches (16), such procedures are pointless if the
exon-intron structure is predicted incorrectly. Recently, P.
Green (personal communication), Snyder and Stormo (17),
Searls and Murphy (18), and Knecht (19) made the first
attempts to incorporate similarity analysis into gene prediction
algorithms. In ref. 17, the exon statistics/neural network
approach was supplemented by scoring exons according to
their local BLAST similarity to known proteins. In ref. 19,
introns were considered as a special case of gaps in the
standard alignment problem. This is equivalent to a particu-
larly simple case of the spliced alignment problem (site mode).
Our tests show that this mode is overly sensitive to evolutionary
divergence (see below). A recent study (13) indicates that even
naive similarity analysis significantly improves the perfor-
mance of gene recognition algorithms. However, the previ-
ously proposed similarity-based approaches are unable to find
an exon assembly with the guaranteed best fit to a homologous
protein. Our method finds such an assembly, thus achieving
almost perfect predictions in the case a homologous protein is
available. We emphasize another important difference be-
tween our approach and other combinatorial algorithms for
exon assembly (6, 7, 20). These algorithms score the potential
exons at the preprocessing step. The spliced alignment algo-
rithm avoids assignment of similarity scores to the blocks thus
achieving accurate resolution of exon endpoints (see below).

SPLICED ALIGNMENT PROBLEM
We start with the formal statement of the spliced alignment
problem. Let G = gi ... gn be a string of letters and let B =
gi ... gj and B'= gi, . . . gj, be substrings of G. We write B <
B' ifj < i', i.e., ifB ends before B' starts. A sequence r = (B1,
. . . , Bp) of substrings of G is a chain if B1 < B2< . . . < Bp.
We denote the concatenation of strings from the chain F by F*
= B1 *B2* ... *Bp. Given two strings G and T, s(G,T) denotes
the score of the optimal alignment between G and T (21).

Let G = gi . . . gn be a string called genomic sequence, T =
ti ... tm be a string called target sequence and J = {B1, . . . Bb}
be a set of substrings of G called blocks. Given G, T, and 2,
the spliced alignment problem is to find a chain F of strings
from h such that the score s(F*,T) of the alignment between
concatenation of these strings and the target sequence is
maximum among all chains of blocks from A.
A naive two-stage approach to the spliced alignment problem

consists of detecting all relatively high similarities between
each block and the target sequence followed by the construc-
tion of an optimal subset of compatible similar fragments by
sparse dynamic programming (22, 23). This two-stage approach
is hardly suitable for exon assembly because the number of
blocks is typically very high and the endpoints of the similarity
domains are not well-defined. See ref. 24 for other intrinsic
shortcomings of the two-stage approach to similarity search.
These shortcomings are avoided in a space- and time-efficient
algorithm described -below.
We reduce the exon assembly problem to the search of a

path in some (unweighted) graph. Vertices in this graph
correspond to the blocks, arcs correspond to potential transi-
tions between blocks, and the path weight is defined as the
weight of the optimal alignment between the concatenated
blocks of this path and the target sequence.
For the sake of simplicity, we consider sequence alignment

with linear gap penalties and define Amatch, Amismatch, and Aindel
scores as usual (21). Amatch and Aimismatch define a score for
every pair of lettersx andy from the alphabet as A(xvy) = Amath
if x = y and A(x,y) = -Amismatch, otherwise.

Let Bk = gk ... gi ... gi be a substring of G containing a
position i. Define i-prefix of Bk as Bk(i) = gm ... gi. For a block
Bk = gm ... gl let first(k) = m, last(k) = 1, and size(k) = 1 - m
+ 1. Let F = (BI, . . . , Bk,.. . , Bt) be a chain such that some
block Bk contains position i. Define F*(i) as a string F*(i) =
B, * B2 * . .. * Bk(i). Let

S(i,j, k) = max s(F* (i), T(j)).
all chains F containing block Bk

S(i,j, k) can be easily computed by dynamic programming as
described below.

Let Oa(i) = {k: last(k) < i} be the set of blocks ending
(strictly) before position i in G. The following recurrence
computesS(ij,]k) forl i n 1 c-- jSn,m, and 1 k b:

S(ij, k) =

FS(i - 1,j - 1,k) + A(gi,tj),
S(i - 1,j, k) + Aindel,

max max/Eg3(flrst(k)) S(last(l),j - 1,1) + A(gi, tj),
maxyE(I3(flSt(k)) S(last(l),j, I) + Aindel,
S(i,j - 1, k) + Aindel.

if i #& first(k)
if i #& first(k)
if i = first(k)
if i = first(k)

[1]

After computing the three-dimensional table S(ij,k), the
score of the optimal spliced alignment can be found as

max S(last(k), m, k).
k

Note that S(ij,k) is defined only if i E Bk and therefore only
a portion of entries in the three-dimensional n x m x b matrix
S needs to be computed. The overall number of such entries
is mEk lsize(k) = nmc, where c = k1isize(k) is the coverage
of the genomic sequence by blocks. A naive implementation of
(Eq. 1) runs in O(mnc + mb2) time. Since the graphs for real
genomic sequences are rather large, the standard dynamic
programming in this case is prohibitively time- and space-
consuming. We take into account the specifics of the exon
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assembly problem and modify the graph thus reducing time
and space complexity.
The spliced alignment problem also can be formulated as a

network alignment problem (25). In this formulation, each
block Bk corresponds to a path of length size(k) between
vertices first(k) and last(k) and paths corresponding to blocks
Bk and B, are joined by an edge (last(k)first(t)) if Bk < B, (Fig.
lb). The network alignment problem is to find a path in the
network with the best alignment to the target sequence. The
number of edges in the corresponding network is O(nc + b2)
and, therefore, the network alignment algorithm (25) and the
algorithm described by recurrency (Eq. 1) have essentially the
same running time. See refs. 24 and 26 for various versions of
the network alignment problem and ref. 20 for a different
combinatorial approach to the exon assembly.
Below we make equivalent transformations of the described

network which lead to the reduction in time and space. Define

P(i, j) =
max S(last(l), j, 1)
1EEJa(i)

Then Eq. 1 can be rewritten as

S(i, j, k) =

rS(i - 1,j - 1,k) + A(gi,tj),
S(i - 1, j, k) + Aindel,

max P(first(k),j - 1) + A(gi, tj),
P(first(k), j) + Aindel,
S(i, j - 1, k) + Aindel

if i # first(k)
if i + first(k)
if i = first(k)
if i = first(k)

[2]

where

P(i, j) = max
P (i - 1, j kMaXk:lst(k)=i-1 S(i - 1,]j, k). [3]

The network corresponding to Eqs. 2 and 3 has O(nc + b)
edges (Fig. lc), thus leading to a O(mnc + mb) spliced alignment
algorithm. Below we modify the spliced alignment algorithm to
reduce the time and space requirements even further.

Define BL(i, j, 1) for i - 1 as the optimal score of the spliced
alignment for the block system ' (i)U{Bk: last(k) = l} (i.e., for
blocks ending exactly at position 1 or before position i)

first(k) < first(t). Let

1
c =-

n
> size(k).

k: Bk is prime

The network corresponding to recurrencies (Eqs. 4 and 5) has
O(mncp + b) edges thus leading to an algorithm with O(mncp
+ mb) running time. The advantage of such formulation is that
for a typical exon assembly problem, many potential exons end
at the same position and thus cp is small as compared with c.
A space-efficient version of the spliced alignment algorithm,
which will be described in detail elsewhere, uses the technique
from ref. 27.
We distinguish between several modes of block generation.

The simplest mode is that we consider all blocks (exons)
generated by a set of potential splicing sites generated by GU
(donor site) andAG (acceptor site) dinucleotides (site mode).
An algorithmically more complicated situation arises if can-
didate exons generated by pairs of potential acceptor and
donor sites are subject to some filtering procedure (exon
mode). Finally, a preliminary exon assembly procedure can be
used to generate a set of potential exons and introns (exonl
intron mode). Depending on the mode, the algorithms for the
spliced alignment problem differ in time and space require-
ments. Above we concentrated on the exon mode because this
mode adequately captures the combinatorics of exon assembly.
The above recurrencies depend on three parameters:

genomic sequence parameter i, target sequence parameter j,
and block parameter k/l. In the site mode, the number of
parameters can be reduced to two by eliminating the block
parameter. A straightforward modification of recurrencies
(Eqs. 2 and 3) leads to an O(nm) spliced alignment algorithm,
thus significantly reducing the running time in the site mode
as compared with the block mode. However, the use of the site
mode decreases the quality of recognition (see below).
The spliced alignment problem captures the major computa-

tional challenges of the similarity search approach to the exon
assembly. However, in realistic situations there exist important
complications that do not seriously affect the running time of the
algorithm, although they greatly increase the software implemen-
tation efforts. These complications, which will be described
elsewhere, include consideration of initial and terminal blocks,
maintenance of the reading frame information, avoidance of
in-frame stop codons, restrictions on exon and intron lengths,
amino-acid scoring schemes, and gap penalties.

BL(i, j,l) = max S(i, j, k)-
{k: last(k) =l or last(k)<i}

BL(i, j, 1) satisfies the following recurrency

BL(i, j, I) =

max

BL(i - 1,] - 1,1) + A(gi, tj),
if 3 k:first(k) < i last(k) = 1

BL(i - 1, j, l) + Aindel,
if 3 k:first(k) < i c last(k) = 1

P(i,j - 1) + A(gi,tj),
if 3 k:first(k) < i c last(k) = I

P(i,j) + Adl,
if 3 k:first(k) < i ' last(k) = 1

,BL(i,j- 1,1) + Aindl

where

P(i,j)
- 1,]j) 5

imaXk 1st(k)=i-lBL(i - 1,j,i - 1). [5]

A block Bk is called prime if it contains all blocks ending at
last(k), that is, for every other block Bt, last(k) = last(t) implies

DATA AND METHODS
Genomic Sequences. The test set (Table 1) consisted of

genomic fragments containing 47 complete multiexon genes (a
subset of a sample described in ref. 28). We also analyzed
performance of the algorithm on a set of long genomic
sequences (15,000-23,000 nt) containing genes with 10 exons
or more and on a sample from ref. 17 (data not shown).
Target Sequences. For each gene, a list of related proteins

was constructed using the ENTREZ data base of BLAST (29)
similarity scores (March 1995 release). We retained the
protein having the highest BLAST similarity score with the
genomic sequence in each of the following categories: non-
primate mammals, other vertebrates, invertebrates, other
eukaryotes, and prokaryotes (Table 2). Each gene had a
mammalian relative, but representation in other categories
was less complete.

Blocks. For each genomic sequence in the test sample, three
different sets of blocks were generated. The first one corre-
sponds to the site mode and contains all candidate exons (all
blocks between potential start/acceptor and stop/donor sites).
Therefore, it is guaranteed to contain all true exons with
conventional AG-GU boundaries. Two other sets represent
different degrees of filtration of this set. For weakfiltering, each
candidate exon is assigned a score combining the strength of its

Genetics: Gelfand et al.
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donor and acceptor sites and coding potential (12). The fixed
number (600) of the highest weighting candidate exons was
retained. Only one exon (in HUMEMBPA) was missed by this
procedure. For strong filtering, we used vector dynamic pro-
gramming algorithm that generates the Pareto set of exon
chains (28) and retained exons occurring in the top 50 chains.

Sequence Similarity. It is well-known that protein sequence
comparison reveals sequence similarities that are difficult to
detect at the DNA level. Thus, we have implemented the
protein version of the spliced alignment algorithm. The pro-
gram translates each block, taking into account its reading
frame and performs protein alignment with symbol-dependent
mismatch penalties. Spliced alignments were scored using the
PAM120 matrix (30) assuming linear gap penalties with Aindel
ranging from 1 to 3 (all tests were performed in three variants).

Evaluation of Results. We used four standard parameters to
evaluate the agreement between the predicted and actual
exon-intron structures. Denote by TP and TN the number of
correctly predicted coding (true positive) and noncoding (true
negative) nucleotides, respectively, denote byFN the number of
missed coding (false negative) nucleotides, and denote by FP

Table 1. Results of prediction for mammalian targets

Proc. Natl. Acad. Sci. USA 93 (1996)

the number of noncoding nucleotides predicted to be coding
(false positive). The overlap between the predicted and true
structures, called overlap quality, is measured by OQ = TP/(TP
+ FP + FN). Specificity is measured by the overprediction
OV = FP/(TP + FP). Similarly, sensitivity is measured by
underprediction UN = FN/(TP + FN). Finally, the overall
performance is characterized by the correlation coefficient
CC = (TP.TN - FP.FN)/V(TP + FP)-(TN + FN).(TP +
FN).(TN + FP). Note that for exact predictions OQ = CC =
100%, whereas UN = OV = 0%.

Testing Procedure. The quality of the exon assembly was
assessed in two ways. First, we compared the predicted struc-
ture with the true structure. However, since the degree of
sequence conservation depends on the genes being considered,
and there exists the possibility of alternative splicing or
evolution by sliding of splicing sites, results of this test, while
suggestive, could not be standardized.
To provide a uniform testing procedure, we performed a

second test, which was to simulate sequence evolution and to
evaluate performance of the method at different evolutionary
times. Thus, we modified the original sequences using multi-

No ID
1 2

1 humapexn
2 humazcdi
3 humbhsd
4 humbnpa
S humcapg
6 humcbrg
7 humchymb
8 humcox5b
9 humcspa

10 humembpa*
11 humfabp
12 humgOsl9a
13 humgOsl9b
14 humgad45a
15 humgaret
16 humghn
17 humhll4g
18 humhmg2a
19 humi309
20 humibp3
21 humigera
22 humillb
23 humil4a
24 humilSa
25 humil8a
26 humil9at
27 humkal2
28 hummif
29 hummis
30 humops
31 humpald
32 humpf4vla
33 humpgamm
34 humplpspct
35 humpppat
36 humrpsl7
37 humrps6b
38 humsaa
39 humsftpla
40 humtfpb
41 humthyla
42 humtnfba
43 humtnfx
44 humtpalbu
45 humtrpylb
46 humubilp
47 humv2r

nt
3

3730
5002
9404
1922
3734
3326
3279
2593
4791
3608
5204
4102
4788
5378
4754
2657
4428
4341
3709
10884
7659
7824
9900
3241
5191
4663
6139
2167
3100
6953
7616
1468
3771
3409
2775
4029
4990
3460
4732
13865
2806
2140
3130
6172
2609
3583
2282

NE aa Target ID
4 5 6

4 318 btbaplr
5 251 mmnel
3 373 bt3bhsd
3 134 pigbnp
5 255 mmcatheg
3 277 pig20bhd
5 247 dogchamc
4 129 ratdccovb
5 246 musccpa
5 222 s33799
4 132 ratfabpx
3 92 mmscimip
3 93 musstcpa
4 165 crugad45
5 447 pytgcrb
5 217 bovgrowp
4 135 ratbpgal
4 209 pighmg2
3 96 musstcpb
4 291 ratigfbp3a
5 257 dogigerac
6 269 rabillb
4 153 ssilk4
4 134 b39881
4 99 rabnapl
5 144 musp40m
5 261 cfkallik
3 115 musgia
5 560 bovmis
5 348 cfopsin
4 147 oattryre
3 104 ratpf4
3 253 rnpgmut
5 197 mvspc
3 95 bovsmplsm
5 135 crurpsl7
6 249 ratrps6
3 122 musamyaff
4 248 s48768
6 295 rabrtf
3 167 rnthycsgp
3 205 muslta
4 233 cattnfaa
6 177 rnvegp2b
5 275 dogmctrpa
4 157 musubilp
3 371 ssvrv2a

Taa S%
7 8

318 96
265 43
373 79
131 52
261 62
289 86
249 82
129 86
247 60
206 92
132 87
92 81
92 80
165 96
450 92
217 70
135 94
210 99
85 40

291 85
252 55
268 77
133 56
135 75
101 81
144 59
261 69
115 95
575 79
348 97
147 87
105 66
253 92
190 80
95 76
135 99
249 99
122 69
248 73
292 71
161 74
202 70
233 91
177 60
275 77
157 92
370 86

RE
9

4
S
3
3
S
4
S
4
S
S
4
3
3
4
S
S
4
4
2
4
S
6
4
4
S
S
S
3
5
S
4
3
3
S
3
S
6
3
4
6
3
3
4
6
S
4
3

Raa CC OQ
10 11 12

318 100 100
251 100 100
373 100 100
134 100 100
255 99 99
288 97 96
247 100 100
129 100 100
246 100 100
206 94 89
132 100 100
92 100 100
93 100 100
165 100 100
452 99 99
217 98 97
135 100 100
209 100 100
76 75 57

291 100 100
257 100 100
269 100 100
159 100 100
134 100 100
99 100 100
144 100 100
261 100 100
115 100 100
560 100 100
348 100 100
147 100 100
104 100 100
253 100 100
191 98 97
168 100 100
135 100 100
249 100 100
122 100 100
248 100 100
295 100 100
167 100 100
205 100 100
233 100 100
176 100 100
275 100 100
157 100 100
371 100 100

Weak filtering, Aindel = 3. 1 No), number; 2 (ID), genomic sequence ID; 3 (nt), fragment length in nucleotides; 4 (NE), number of actual exons; S (aa), protein length
in amino acids; 6 Target ID; 7 (Taa), target protein length in amino acids; 8 (S%), spliced alignment score in percent of the score of the target alignment against itself;
9 (RE), number of exons in the predicted gene; 10 (Raa), predicted gene length in codons; 11 (CC), correlation coefficient CC; 12 (OQ), overlap quality OQ; 13,
overprediction OV; 14 (UN), underprediction UN.
*Overfiltration.
tData base annotation error was corrected.
tAlternative splicing.

OV UN
13 14

0 0
0 0
0 0
0 0
1 0
4 0
0 0
0 0
0 0
9 1
0 0
0 0
0 0
0 0
1 0
2 2
0 0
0 0
19 35
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 3
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
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Table 2. Results of prediction for nonmammalian targets

NE aa TS Target ID
3 4 5 6

4 318 I drorrp
5 251 V ggu15155
3 373 P noccdh
3 134 V anf chick
3 277 P svpks
5 222 V pwlec
4 132 V xelifabp

E scmfabpl4
3 92 V chkcyto
3 93 V chkcyto
4 165 V xelrbll2x
5 447 V xelnpypyy

I dmdoprec
4 135 V leg6 chick

V xellbl
I celbgb

4 209 V xelhmg2a
I dmul3881
E yscmaknhp

3 96 V chkcyto
4 99 V chkrsvind
3 115 V chklmif
5 348 V chkrdpsn

V s49004
I s53494
P hhrhod

4 147 V gdtrthy
V trtranst

3 253 P stmpgm
3 95 V larpyy
5 135 V ggrpsl7

I drorpsl7
E neucrp3

6 249 V xelrps6x
I drorps6x
E ysprps6a
P ecprsfri

3 167 V chkthylgp
4 157 I tpubiexta

Taa S%
7 8

679 32
248 30
364 19
140 28
249 20
172 17
132 75
133 24
96 27
96 27
132 20
366 26
511 19
134 63
135 38
279 17
212 88
393 35
176 15
96 30
103 49
115 79
351 97
354 90
376 28
262 12
150 76
150 73
253 48
93 38
129 96
131 76
146 72
249 97
248 78
239 69
131 70
160 53
225 21

RE Raa CC OQ OV UN
9 10 11 12 13 14

8 422 61 51 47 7
5 251 100 100 0 0
3 375 100 99 1 0
3 134 100 100 0 0
7 273 57 39 43 44
9 162 80 70 6 27
4 132 100 100 0 0
4 132 100 100 0 0
4 112 93 87 12 2
5 87 79 66 37 33
6 156 70 48 34 37
6 369 74 64 14 29
6 491 82 76 19 8
4 134 98 96 1 2
4 139 94 90 5 6
9 279 63 45 55 2
4 209 100 100 0 0
7 333 78 56 44 0

10 190 47 17 67 73
3 96 100 100 0 0
5 102 94 88 7 4
3 115 100 100 0 0
5 348 100 100 0 0
5 348 100 100 0 0
5 348 98 97 3 0
6 268 62 42 29 50
4 147 100 100 0 0
4 147 100 100 0 0
3 253 100 100 0 0
3 95 100 100 0 0
5 135 100 100 0 0
5 135 100 100 0 0
5 135 100 100 0 0
6 249 100 100 0 0
6 249 100 100 0 0
6 249 100 100 0 0
7 152 70 41 25 53
3 161 97 95 4 1
9 231 64 35 61 29

Parameters and notation as in Table 1. Target samples (TS): V, vertebrate; I, invertebrate; E, other eukaryote; P, prokaryote.

ples of 1 PAM amino acid substitution matrix (31). We also setting suggested by the random simulations) are presented in
modeled insertions and deletions, allowing 1 gap per 100 Tables 1 and 2. For mammalian target proteins, the predicted
amino acid positions per 1 PAM with the probability 3%. The exon-intron structure perfectly or almost perfectly fits the

length of an individual gap ranged from 1 to 5 nt with uniform correct structure in all but one case (Table 1). The discrep-
probability in rough agreement with the gap-length distribu- ancies with the data base gene structure descriptions have been
tion in protein alignments (32). The evolutionary time changed observed in 7 out of 47 fragments (in two more cases the

in the interval up to 300 PAM with the increment of 5 PAM, program detected database annotation errors, see Table 1). In

and for each gene five independent runs of the mutation two cases, our predictions corresponded to experimentally
process were performed at each step with subsequent use of proven alternative splicing events [donor site in HUMGARE

the mutated proteins as the targets. (33) and acceptor site in HUMPLPSPC (34)]. Counting these
The program PROCRUSTES 2.0, which implements the spliced cases as correct predictions, we get CC = 99%, OQ = 98%,

alignment algorithm, is available from http://www_hto. OV = 1%, and UN = 1%. Analyses of the same data set by

usc.edu/software/procrustes. programs GRAIL-2 (16) and GREAT (28) yields OV = 10% and
UN = 18% for GRAIL and OV= 21% and UN = 12% for GREAT
(tests are described in ref. 28).

RESULTS Consider in more detail the remaining five cases. One error

Simulated Targets. Results of prediction on simulated tar-
(HUMEMBPA) is caused by overfiltration of a candidate

getsgrad ydiverging from the analyzed gene are presented exon; this is the only such situation in the testing set. In one

getFigs. 2graduallyFig. 2 demonstrates that almost 10 correct
erroneous case (HUMI309 with mouse target), the exact fit is
obtained if nonmammalian vertebrate (chicken) target iS used

predictions are obtained up to 100 PAM distance. This roughly (ftable Them erorsin tebremaining three csese
corresponds to 40% similarity, indicating that for an average substitutions of very short initial or terminal exons.

protein family we are likely to correctly predict a human gene The qualityi of prediction remains high when targets are

given a mammalian relative. taken from vertebrate nonmammalian targets (CC = 90%,

It can be seen that filtering of candidate exons significantly OQ = 84%, OV = 7%, UN = 11%). Since the target sequences
improves the results with both close and highly divergent have been chosen based on BLAST similarity, in some cases the
targets, unless it leads to loss of true exons (Fig. 3). Overall, the distantly related targets are of substantially different length,
best results are obtained with the weak filtering procedure: the with whole domains missing or added. However, if this does
quality of prediction with no filtering at all (site model) not happen, the results are often rather good even if a lower
deteriorates as the PAM distance increases, whereas strong eukaryote or a prokaryote target is used (e.g., HUMBHSD,
filtering loses many true exons. HUMFABP, HUMRPS17, HUMRPS6B).
Data Base Targets. Results of the tests with the real We have also tested the algorithm on sample II from ref. 17

database targets for weak filtration and Aindel = 3 (the best (data not shown). From this sample we excluded two sequences

No
1

1
2
3
4
6

10
11
11
12
13
14
15
15
17
17
17
18
18
18
19
25
28
30
30
30
30
31
31
33
35
36
36
36
37
37
37
37
41
46

ID
2

humapexn
humazcdi
humbhsd
humbnpa
humcbrg
humembpa
humfabp

humgOsl9a
humgOsl9b
humgad45a
humgare

humhll4g

humhmg2a

humi309
humil8a
hummif
humops

humpald

humpgamm
humpppa
humrpsl7

humrps6b

humthyla
humubilp
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FIG. 2. Results of prediction on simulated targets at different PAM
distances with weak filtering (,i,,dl = 3). Horizontal axis, PAM
distance. Plots, the ratio of the similarity score when the genomic
sequence is aligned against the encoded protein and the score of the
optimal alignment of the genomic and target sequences (Sim), corre-
lation coefficient (CC), overlap (OQ), overprediction (OV), and
underprediction (UN).

with errors in the corresponding data base entries and two
sequences having no relatives found by BLAST. We retained a
gene having GC instead of GU in a donor site and two more
genes with overfiltered exons. The program produced CC =
97%, OQ = 95%, OV= 1%, and UN = 4%.

DISCUSSION
Currently, a newly sequenced human gene has a good chance
for having an already known relative and it is clear that
progress in large-scale sequencing projects will soon make this
chance significantly higher. Therefore, the trend in gene
prediction will likely be shifting from statistics-based ap-
proaches to similarity-based algorithms. Although similarity
search was successfully applied to gene detection in the past,
the potential of similarity search for gene prediction remained
largely unexplored. The spliced alignment algorithm described
in this paper resolves the combinatorial problems associated
with the analysis of an enormously large number of candidate
exon assemblies.

Results of the tests both on real and simulated data dem-
onstrated that the spliced alignment algorithm significantly
outperforms the conventional gene recognition methods if
even a distantly related protein is available. The method is
sufficiently robust to increase of evolutionary distance be-
tween the analyzed gene and the target protein. However, the
current version of the algorithm is only the first step toward
applications of similarity analysis for gene recognition. Our
study identified a number of new open problems.

If a target protein has only a local similarity to the analyzed
gene, the spliced alignment algorithm might miss some exons.
This observation raises a problem of devising a local spliced
alignment algorithm and new data base search techniques for
gene recognition. Another important challenge is to use the
fastly growing cDNA data and to account for partially se-
quenced genes, sequencing errors, frameshifts, untranslated

dP

P5

FIG. 3. Results of prediction on simulated targets at different PAM
distances for various filtration modes (AI,,5,d = 3). Horizontal axis,
PAM distance. Vertical axis, overlap OQ in %. Strong filtering,
subsample with no overfiltration (Strong); strong filtering, subsample
of fragments with some true exons overfiltered (Overfiltered); weak
filtering (Weak); no filtering/site mode (Site).

5'-leading and 3'-trailing sequences, etc. Finally, there are several
open combinatorial problems, the solution of which would im-
prove the performance of the spliced alignment algorithms.
These are spliced alignment with multiple targets, suboptimal
spliced alignment, and spliced alignment of genomic sequences
with genomic (as opposed to protein) targets.
The spliced alignment algorithm is already a powerful and

flexible tool for gene recognition if a related protein is known.
With the fast growth of DNA sequencing efforts, it promises
to be a method of choice in the future.

We are grateful to Martin Farach, George Komatsoulis, Eugene
Koonin, Webb Miller, Michael Roytberg, Anatoly Rubinov, and
Sing-Hoi Sze for many helpful comments. This work is supported by
Department of Energy Grant DE-FG02-94ER61919. The work of
M.S.G. is also partially supported by Russian Fund of Fundamental
Research Grant 94-04-12330 and Grant MTW300 from International
Science Foundation and the Russian Government. M.S.G. and A.A.M.
are partially supported by the Russian State Program "Human Ge-
nome." P.A.P. is also supported by the National Science Foundation
Young Investigator Award CCR-9457784.

1. Fickett, J. W. (1982) Nucleic Acids Res. 10, 5303-5318.
2. Harr, R., Haggstrom, M. & Gustaffson, P. (1983) Nucleic Acids Res. 11,

2943-2957.
3. Gelfand, M. S. (1990) Nucleic Acids Res. 18, 5865-5869.
4. Uberbacher, E. & Mural, R. (1991) Proc. Natl. Acad. Sci. USA 88,

11261-11265.
5. Guigo, R., Knudsen, S., Drake, N. & Smith, T. (1992) J. Mol. BioL 226,

141-157.
6. Snyder, E. E. & Stormo, G. D. (1993) Nucleic Acids Res. 21, 607-613.
7. Gelfand, M. S. & Roytberg, M. A. (1993) BioSystems 30, 173-183.
8. Dong, S. & Searls, D. B. (1994) Genomics 23, 540-551.
9. Solovyev, V. V., Salamov, A. A. & Lawrence, C. B. (1994) Nucleic Acids

Res. 22, 5156-5163.
10. Legouis, R., Hardelin, J.-P., Levilliers, J., Claverie, J.-M., Compain, S.,

Wunderle, V., Millasseau, P., Le Paslier, D., Cohen, D., Caterina, D.,
Bougueleret, L., Delemarre-Van de Waal, H., Lutfalla, G., Weissenbach,
J. & Petit, C. (1991) Cell 67, 423-435.

11. Fickett, J. W. (1996) Computers Chem. 19, in press.
12. Gelfand, M. S. (1995) J. Comput. Biol. 2, 87-115.
13. Burset, M. & Guigo, R. (1996) Genomics 31, in press.
14. Gish, W. & States, D. J. (1993) Nat. Genet. 3, 266-272.
15. Adams, M. D., Kerlavage, A. R., Fields, C. & Venter, J. C. (1993) Nat.

Genet. 4, 256-267.
16. Xu, Y., Einstein, J. R., Mural, R. J., Shah, M. & Uberbacher, E. C. (1994)

in Proceedings of the Second International Conference on Intelligent Systems
for Molecular Biology, eds. Altman, R., Brutlag, D., Karp, P., Lathrop, R.
& Searls, D. (AAAI, Menlo Park, CA), pp. 376-383.

17. Snyder, E. E. & Stormo, G. D. (1995) J. Mol. Biol. 248, 1-18.
18. Searls, D. & Murphy, K. (1995) Proceedings of the Third International

Conference on Intelligent Systems for MolecularBiology (AAAI, Cambridge,
U.K), pp. 341-349.

19. Knecht, L. (1995) Lect. Notes Comput. Sci. 937, 215-229.
20. Knight, J. & Myers, E. W. (1995) Algorithmica 13, 211-243.
21. Waterman, M. S. (1995) Introduction to Computational Biology (Chapman

& Hall, London).
22. Wilbur, W. & Lipman, D. (1983) Proc. Natl. Acad. Sci. USA 80, 726-730.
23. Myers, E. W. & Miller, W. (1995) in Proceedings of the Sixth Annyal

ACM-SIAM Symposium on Discrete Algorithms (ACM, San Francisco), pp.
38-47.

24. Sankoff, D. (1992) Math. Biosci. 111, 279-293.
25. Kruskal, J. B. & Sankoff, D. (1983) in Time Warps, String Edits, and

Macromolecules, eds. Kruskal, J. B. & Sankoff, D. (Addison-Wesley,
Reading, MA), pp. 265-310.

26. Myers, E. W. & Miller, W. (1989) Bull. Math. Biol. 51, 5-37.
27. Hirshberg, D. S. (1975) Comm. ACM 18, 341-343.
28. Gelfand, M. S., Podolsky, L. I., Astakhova, T. V. & Roytberg, M. A. (1996)

J. Comp. Biol. 3, 223-234.
29. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990)

J. Mol. Biol. 215, 403-410.
30. Altschul, S. F. (1991) J. Mol. Biol. 219, 555-565.
31. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978) in Atlas ofProtein

Sequence and Structure, ed. Dayhoff, M. 0. (Natl. Biomed. Res. Found.,
Washington, DC), Vol. 5, Suppl. 3, pp. 345-352.

32. Pascarella, S. & Argos, P. (1992) J. MoL Biol. 224, 461-471.
33. Song, I., Brown, D. R., Wiltshire, R. N., Gantz, I., Trent, J. M. & Yamada,

T. (1993) Proc. Natl. Acad. Sci. USA 90, 9085-9089.
34. Glasser, S. W., Korfhagen, T. R., Perme, C. M., Pilot-Matias, T. J., Kister,

S. E. & Whitsett, J. A. (1988)J. Biol Chem. 263, 10326-10331.
35. Carroll, L. (1865) Alice's Adventures in Wonderland and Through the

Looking Glass reprinted (1981) by Bantam, New York.

Strong

OverfltereWek

........... .w.aS
.....

9066 Genetics: Gelfand et aL

so

60

40


